Dr. Anton Malevich

Aufgabe 10.1 Welche der Aussagen sind wahr? (Hier sind $x, y \in \mathbb{R}$.)

- a) $0 < 1 \lor 1 > 2$,
- b) $0 > 1 \land 1 > 2$,
- c) $0 < 1 \implies 1 < 2$,
- d) $0 > 1 \implies 1 > 2$,
- e) $(\exists x \in \mathbb{R}) \ x^2 = 4$,
- f) $(\exists! x \in \mathbb{R}) \ x^2 = 4$ (es existiert ein eindeutiges x),
- g) $(\forall x \in \mathbb{R}) \ (\exists y \in \mathbb{R}) \ x < y$,
- h) $(\exists x \in \mathbb{R}) \ (\forall y \in \mathbb{R}) \ x < y,$
- i) $(\forall x \in \mathbb{R}) \ (\forall y \in \mathbb{R}) [x < 0 \land y < 0 \implies xy > 0].$

Aufgabe 10.2 Unter Verwendung der Aussagen

- A: "Der Student hat die Lehrveranstaltungen besucht."
- B: "Der Student hat gewissenhaft studiert."
- C: "Der Student hat die Übungsaufgaben gelöst."
- D: "Der Student hat das Examen bestanden."

beschreiben Sie symbolisch:

- a) Wenn der Student die Lehrveranstaltungen besucht hat, gewissenhaft studiert hat und die Übungsaufgaben gelöst hat, besteht er das Examen.
- b) Wenn der Student die Lehrveranstaltungen besucht hat, aber nicht gewissenhaft studiert hat und die Übungsaufgaben nicht gelöst hat, besteht er das Examen nicht.
- c) Der Student besteht das Examen genau dann, wenn er die Lehrveranstaltungen besucht hat, gewissen hat studiert hat und die Übungsaufgaben gelöst hat.

Aufgabe 10.3 Verneinen Sie die Aussagen aus Aufgabe 2. Sorgen Sie dafür, dass in den neuen Aussagen das Zeichen ¬ nur vor den "Buchstaben" vorkommt.

Aufgabe 10.4 Beweisen Sie mithilfe einer Wahrheitstafel, dass die folgenden Aussagen Tautologien sind.

- a) $(A \Longrightarrow \neg A) \Longrightarrow \neg A$,
- b) $A \vee (B \wedge \neg B) \iff A$,
- c) $[A \lor (B \land C)] \iff [(A \lor B) \land (A \lor C)],$
- d) $[(A \land \neg B) \implies (C \land \neg C)] \iff (A \implies B).$

Aufgabe 10.5 Sei $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\} \text{ und } C = \{1, 2, 5, 6\}.$ Bestimmen Sie $(A \cap B) \cup C, (B \cap C) \cup A, (C \cap A) \cup B, A \cap (B \cup C), B \cap (C \cup A), C \cap (A \cup B).$

Beispiel. Wir bezeichnen $\underline{n} := \{1, 2, 3, \dots, n\}$. Es gilt

$$\underline{3} \subset \underline{5}, \quad 3 \in \underline{5}, \quad \{3\} \subset \underline{5}, \quad \{2,3\} \subset \underline{5}, \quad 5 \notin \underline{3}, \quad \underline{5} \not\subset \underline{3}.$$

Die Elemente von $A = \{\underline{1}, \underline{2}, \underline{3}\}$ sind selbst Mengen, also

$$\underline{2} \in A$$
, $2 \notin A$, $\{\underline{2},\underline{3}\} \subset A$, $\{2,3\} \not\subset A$, $\{2,3\} \notin A$.

Aufgabe 10.6 Bestimmen Sie alle Teilmengen von \emptyset , 1, 2.

Beispiel. Wir beweisen die Aussage $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

2) rechte Menge \subset linke Menge (die andere Richtung wurde in der Vorlesung gezeigt). Sei $x \in (A \cup B) \cap (A \cup C)$. Dies ist äquivalent zu $x \in A \cup B$ und $x \in A \cup C$ bzw. $(x \in A \text{ oder } x \in B)$ und $(x \in A \text{ oder } x \in C)$. Also auf jeden Fall ist $x \in A$ und in B oder C. Somit $x \in A \cup (B \cap C)$.

Aufgabe 10.7 Beweisen Sie die De Morganschen Regeln:

a)
$$U \setminus (A \cap B) = (U \setminus A) \cup (U \setminus B)$$
,

b)
$$U \setminus (A \cup B) = (U \setminus A) \cap (U \setminus B)$$
.

Aufgabe 10.8 Beweisen Sie (hier sind A, B, C beliebige Mengen):

a)
$$(A \cap B) \setminus C = A \cap (B \setminus C)$$
,

b)
$$A \setminus (B \setminus C) = A \setminus (B \cup (A \cap C)),$$

c)
$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$
,